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ANOMALOUS REORGANIZATION FREE ENERGIES IN OPTICAL ELECTRON TRANSFER IN SOLUTION
PAUL DELAHAY

Department of Chemistry, New York University, New York, New York 10003

Autoionization bands are observed in the photoelectron emission
spectroscopy of aqueous solutions of cyanometa]ate'complexes (Mn, Fe, W, Mo),
anions (NOE, ClOZ) and cations (Ag+, Tl+). Reorganization free energies
for autoionization bands are anomalously low in absolute value (by ca. 1 eV)
in comparison with direct transitions to the continuum. Interpretation is
based on potential energy profiles and model calculations for the

reorganization free energy.

Solutions of certain ions (e.g., Fe(CN)g') in various solvents
exhibit two distinct bands for emission of photoelectrons in the solvent vapor
above the solution. The emission bands consist of a plot of the emission
yield (number of collected electrons per incident photon) against photon
energy. The first band is observed at photon energies lower by ca. 1 eV than
expected from the energetics of electron emission and subsequent
reorganization of nuclear configurations. Conversely, the second band is
observed in the expected range of photon energies. These results will be
interpreted in the present paper by considering emission by autoionization and
direct transition to the continuum.
1. Autoionization in solution Trap

Photoelectron emission by solutions will be interpreted on the .a:.is of ' “mil(

potential energy profiles similar to those used in the discussion of thermal
electron transfer [1,2]. The species being photoionized and the resulting

product are denoted, respectively, by D~ and D regardless of actual ionic
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charges (to simplify notations). The curve U(D7) in Fig. 1 (left)

represents the variations of tne potential energy of the solvated species D~

with a generalized coordinate depending on the nuclear configuration of D~

and the solvent. The reduction of potential energy hypersurfaces to a

two-dimensional representation is discussed in [1,2]. Curve U(D,e”)

pertains to the products of photoionization, namely D and the electron in the

Qas phase. The constant potential energy of the electron at infinity in the

gas phase is included in U(D,e”). The minimum of the U(D”) curve corresponds

to the ground state of D”. Conversely, the minimum of the U(D,e”) curve

pertains to the ground state of D and the electron at infinity in the gas phase

(treated as a vacuum). The two minima are separated by the energy gap Uc'
Photoelectron emission into the gas phase results from the vertical

transition AB (Franck-Condon principle) involving the difference in potential

energy Upg = Uc = Up» where U, (< 0) is the energy for reorganization of

the solvatéd species produced by photoionization. The reorganization process is

represented by the segment BC of the U(D,e”) curve. The kinetic energy of the

electron emitted into the gas phase depends on UAB and the photon energy.
Suppose that the excited state D;x is prepared by the transition AE

requiring the change in potential energy UAE (Fig. 1, right). This transition

satisfies the condition Uo < UAE < U = Upe In that case, radiationless

transitions may occur between the discrete levels of D;x and continuum levels

of (D,e”), and autoionization may occur [3]). The discrete-continuum interaction

can be interpreted as the result of the intersection [1,2] of the potential energy

curves of D;x and (D,e”) (Fig. 1, right). If there is autoionization,

photoelectron emission into the gas phase is observed for a change of potential

energy UAE lower than UAB = Uc - U Two distinct emission bands are

observed if UAB and Upe differ sufficiently. Moreover, the reorganization

cetrhz e ok ;‘.mﬂ,.,“‘“.ﬂ.«‘ -,
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energy U; = Uc - UAE for the autoionization band is lower in absolute
value than U, = Uc - UAB for the band for direct transition to the continuum.

Interaction between discrete and continuum levels considered in the preceding
discussion was already invoked in the interpretation of the emission bands of
anthracene mono- and divalent anion radicals in solution [4]. Autoionization was
inferred in that work from the near coincidence of emission and absorption bands.
The interpretation was not cast in terms of potential energy profiles, and the
reorganization process was not considered. The main points of the present paper
therefore did not appear in [4].

2. Anomalous reorganization free energies

Autoionization is detected in this work from the anomalously low absolute
value of the reorganization free energy R. Basic equations and methods for the
analysis of data were recently reviewed [5]. The value of R is computed from [1,6]

a6" = 2B, + 26 - R, (1)
where aG" is the free energy for emission; AGH = 4.50 eV on the assumption
of a negligible (#0.1 V) surface potential at the solution-water vapor
interface; aG is the free energy change for the reaction, D (aq) + H+(aq)
= D(aq) + 1/2H2(g). The sum AGH + aG in (1) corresponds to the change of
potential energy Uc in sec. 1. One sets aG" = Et, where Et is the
experimentally determined threshold energy. This equality holds within ca.
0.2 eV or better [7]. The quantity E' is obtained from a linear plot of
Y" vs. E, where Y is the emission yield, E theApnoton energy, and n = 0.4 or
0.5. The extrapolation method is discussed in [5].

Anomalously low values of |R| computed from (1) can be identified by
comparison with the results of model calculations [1,8,9]. The quantity R is
equated to the sum of inner- and outer-sphere contributions denoted by R(in)
and R(out), respectively. One has [8],

R(out) = = (eg) = eg)ed) 2a, (2)
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where €op and €  are the optical and static dielectric constants of water,
respectively, and a is the radius of the boundary between inner- and
outer-sphere regions. Equation (2) yields approximate results, but this does
not matter for our purpose because of the large difference between normal and
anomalous values of R. It is not necessary for the same reason to calculate
R(in) in most cases. Equation (2) is applied in sec. 3, and another method

for identifying anomalous values of R is discussed in sec. 4.

3. Cyanometalate complexes

Some cyanometalate complexes undergo autoionization. Thus, Fe(CN)G'
exhibits two distinct emission bands [10], and the values of |R| for the
complexes of Table 1 are anomalously low except for the second bands of
Mn(CN)g~ and Fe(CN)g™. In fact, [R| is amazingly low (0.3 eV) for
N(CN)g', for instance. The threshold energies in Table 1 were determined
from the emission spectra in [11] by application of the extrapolation method
used in [6,7] and reviewed in [5]. Data on aG are from [12]. One has a =
0.45 nm [13] for the complexes of Table 1. The corresponding free energy,
R(out) = -0.9 eV, computed from (2) is higher in absolute value than the
experimental values of |R|, except for the second bands of Mn(CN)g' and
Fe(CN)6'. The discrepancy is even greater because R(in) (= -0.38 eV for
Fe(CN)g" [13]) should be taken into account and eq. (2) yields somewhat
Tow values of |R{out)| [14]. Thus, only the second bands of Mn(CN)S' and
Fe(CN)g’ correspond to normal values of R and are assigned, on that basis,
to direct transitions to the continuum. The assignment of the second band of
Fe(CN)g’ to autoionization in [10] therefore must be revised.

Autoionization occurs in the range of photon energies in which intense
absorption bands are observed [15,16], as required by the analysis of sec. 1.

The threshold energies of the autoionization bands of Mn(CN)6° (4.8 eV)
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and Fe(CN)g' (5.5 eV) are slightly lower than the photon energies gneX o

4.90 and 5.69 eV [15], respectively, of broad, intense (cmax = 31,100 and
1
c

24,200 M~ m’l) charge transfer absorption bands of these complexes. The

complexes N(CN)g° and Mo(CN)g' exhibit intense charge transfer bands [16] at

1

4.98 eV (" . 25,060 ML cm~l) and 5.17 eV (™* - 15,540 M) cml),

respectively. These values of ghmax

are lower than the corresponding threshold
energies (by 0.4 eV) and the sums 86, *+ 4G of (1) (by ca. 0.1 eV). Tnis is
surprising, and it is possible that these complexes exhibit another absorption

max

band at higher photon energies than the preceding E values. It is also

possible that the gmax

energies are too low by a few tenths of electronvolt
because of the uncertainty in the resolution of the absorption spectrum by
superposed multiple Gaussians.

The two emission bands of Mn(CN)6- in [11] are not as well resolved
as for Fe(CN)g' [10], but they are still apparent. The second band of
Mn(CN)g' has a threshold energy of ca. 6 eV and a normal value R = -1.7 eV.
More exact analysis is not feasible because of the possibility of spurious
emission by Mn(CN)g' for the easily oxidized (by air) solutions of
Mn(CN)g'. The emission spectra of the other complexes of Table 1 were not
investigated in [11] at sufficiently high photon energies (up to ca. 8 eV) to
allow the detection of their normal emission bands by the extrapolation method

of sec. 4.

4. Inorganic anions and cations

Definite evidence for autoionization was found for NOS and C]OZ among
the common inorganic anions investigated in [17]. The reorganization free
energy of Nog in aqueous solution is anomalously low in absolute value:

E = 7.46 eV [17], 26 = 2.320.1 eV [18], R = -0.7 eV from (1). A second

emission band therefore is expected at photon energies corresponding to the

]
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normal value of R. The plot of the emission yield Y to the power 0.5 against
photon energy (sec. 2, [5]) does exhibit a break at ca. 9.2 eV for the data
obtained in [17]). The threshold energies from the two linear segments (7.9 to

9.1 ev and 9.3 to 10.3 eV) of the extrapolation plot are 7.66 and 8.38 eV,

0.4 0.5 generally

respectively. Extrapolation from a plot of Y rather than Y
yields better fits for et < 8 eV [6,7,17] (cf. discussion in [5]). The
resulting first threshold energy is 7.47 eV in good agreement with Et = 7.46 eV
in [17]. The value R = -1.6 eV computed from (1) for Et = 8.38 eV is normal in
contrast with the anomalous value, R = -0.7 eV, for the autoionization band. It

0.4 or YO'5 against photon

should be noted that extrapolation plots of Y
energy can yield only an approximate threshold energy of the autoionization
band. These plots presuppose a constant product of the emission cross section by
the attenuation length of the electron wave in the liquid (cf. discussion in
[5]). This can nhardly be the case for autoionization bands which have the
Gaussian-like shape of absorption bands [4,10].

The change of free energy aG is not available for application of (1) to
emission by C10;. The reorganization free energy R can be computed in that
case from,

Eb = A - 265 - R, (3)
where A is the electron affinity of the ClO4 radical and aG° the free energy
of solvation of CIOZ. Equation (3) involves minor approximations which are
stated in its derivation in [5]. One computes G5 = -2.25 eV for CIOZ
from data in [19,20]. One has: b - 8.45 ev for c1o; [17], A = 5.82 eV
[21], and the anomalous value R = -0.38 eV. Thus, the band at E' - 8.45 eV is
assigned to autoionization. The validity of this assignment rests, of course, on
the corrections of the numerical value of A. A normal value of R would require A

to be lower by ca. 1 eV than the value used here.
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The cations Ag+ and T]+ among those studied in [6] have anomalous
reorganization free energies: et = 7.52 eV, aG = 2.0 eV [12], R = -1.0 eV for
Ag'; EY = 7.40 eV, 46 = 2.2 eV [22], R = -0.7 eV for T1". The anomalous
character of these values of R can be ascertained from the ratio p = ZZR/AGS,
where a6° is the free energy of solvation of the ion having the ionic charge z+
or z-. A numerical value of p is obtained from (2) and the Born equation for
aG® by neglecting the inner-sphere contribution to R. Thus,
op - S - gh. (a)
The term z2 appears in the ratio zzR/AGs because aG° is proportional to

p =~ (e

22 according to the Born equation whereas R(out) of (2) is independent of z.
Equation (3) is based on a crude model but it yields the value, p = 0.56, for
aqueous solutions at room temperature in fair agreement with experiment (Table
2), namely 0.42 ¢ zZR/AGS £ 0.53. It should be noted that the values of

26% used in the calculation of p and the quantity AGH in (1) are not
independent, as one can ascertain from appropriate thermodynamic cycles. The
value of p therefore depends somewhat on the choice of the numerical value of
AGH in (1). Tnis dependence is not significant for our present purpose because
the values of p for Ag+ (p = 1.0/4.96 = 0.20) and n' (p = 0.7/3.56 = 0.20)

are clearly too low (a6° values from [23]).

Reexamination of the results in [6] for TIF yielded a YO'5 extrapolation
plot (from 9.2 to 10.3 eV) and Et = 8.26 eV for the normal emission band of
1. The corresponding value R = -1.6 eV computed for aG = 2.2 eV [22] is
normal whereas the value R = -0.7 eV for the autoionization band is anomalous.
The threshold energy for the second band of Ag+ could not be determined because
of emission by the anion (CIOZ, ' = 8.45 eV [17]) in the range of photon

energies in which this band occurs and is expected.
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5. Correlation with thermal electron transfer

The activation free energy AGt for thermal electron transfer in solution
can be correlated [14] to the reorganization free energy R for emission on the
basis of the theories [1] of Marcus [8] and Hush [9]. One has AGt =w*+R /4
in the case in which the change of free energy is equal to zero (isotope
labeling). There, w is the work required to bring the two reactants from
infinity in solution to the activated complex, and Rx is the reorganization
free energy for thermal electron exchange. The latter is [14] R, ~R+ R(in),
where R has its normal value.

Unwitting use of anomalous values of R leads to AGt'S which are too
Tow. This was the case in [14] for Fe(CN)i™. Using R = -0.6 eV (Table 1),
R(in) = -0.38 eV [13], w = 0.04 eV [14], one computes aG% = 0.29 eV against
0.47 eV from experiment. The value AGt = 0.56 eV computed from the normal
value R = -1.7 eV is closer to the experimental result.
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Table 1
Data on cyanometalate complexes
Et a) AG b) -R
(ev) (ev) (ev)
Mn(CN) g~ ca. 4.8 -0.22 ca. 0.5
ca. 6 ca. 1.7
| Fe(CN)g™ 5.5 0.36 0.6
% ca. 6.6 ca. 1.7
F Fe(CN)GNH3~ 5.4 0.37 0.5
L Fe(CN)sH,0% 5.4 0.49 0.4
E M(CN) g™ 5.4 0.57 0.3
! Mo(CN) g~ 5.6 0.73 0.4

a)Extrapolation plots prepared from data in [11]. Et = 6.6 eV for

.

F Fe(CN)g' from 1.1 eV interval between emission bands in [10].
L b rom [12].

3

3

d

T
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Table 2

Correlation between reorganization and solvation free energies

et a) 6P R 6% ) 2%R/a68

(ev) (ev) (ev) (ev)
OH™ 8.45 1.9 2.05 8.2 0.49
c1” 8.8l 2.55 1.76 3.30 0.53
Br- 8.05 2.0 1.55 3.00 0.52
- 7.19 1.4 1.29 2.61 0.49
vZ* 6.38  -0.25 2.13 19.12 0.45
cre’ 6.14  -0.41 2.06  19.28 0.43
MnZ 8.08 1.56 2.02 18.92 0.43
Fe?* 7.85 0.77 2.08 19.58 0.42
co?* 8.60 1.84 2.26 20.85 0.43

3)krom [6,7].
b)erom [12,18].
c)Flr'om [23] except for OH™ [7].

X
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Captions to Figures H

Fig. 1. Potential energy against generalized coordinate for nuclear

configuration in the cases of direct optical transition to the continuum

(left) and autoionization (right).

Fig. 2. Plots of the emission yield Y to the powers 0.4 (top) and 0.5
(bottom) against photon energy for 1 M NaNO3 (data from [17]).
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